If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = 3x2 + 39x + 108 Reorder the terms: 0 = 108 + 39x + 3x2 Solving 0 = 108 + 39x + 3x2 Solving for variable 'x'. Combine like terms: 0 + -108 = -108 -108 + -39x + -3x2 = 108 + 39x + 3x2 + -108 + -39x + -3x2 Reorder the terms: -108 + -39x + -3x2 = 108 + -108 + 39x + -39x + 3x2 + -3x2 Combine like terms: 108 + -108 = 0 -108 + -39x + -3x2 = 0 + 39x + -39x + 3x2 + -3x2 -108 + -39x + -3x2 = 39x + -39x + 3x2 + -3x2 Combine like terms: 39x + -39x = 0 -108 + -39x + -3x2 = 0 + 3x2 + -3x2 -108 + -39x + -3x2 = 3x2 + -3x2 Combine like terms: 3x2 + -3x2 = 0 -108 + -39x + -3x2 = 0 Factor out the Greatest Common Factor (GCF), '-3'. -3(36 + 13x + x2) = 0 Factor a trinomial. -3((9 + x)(4 + x)) = 0 Ignore the factor -3.Subproblem 1
Set the factor '(9 + x)' equal to zero and attempt to solve: Simplifying 9 + x = 0 Solving 9 + x = 0 Move all terms containing x to the left, all other terms to the right. Add '-9' to each side of the equation. 9 + -9 + x = 0 + -9 Combine like terms: 9 + -9 = 0 0 + x = 0 + -9 x = 0 + -9 Combine like terms: 0 + -9 = -9 x = -9 Simplifying x = -9Subproblem 2
Set the factor '(4 + x)' equal to zero and attempt to solve: Simplifying 4 + x = 0 Solving 4 + x = 0 Move all terms containing x to the left, all other terms to the right. Add '-4' to each side of the equation. 4 + -4 + x = 0 + -4 Combine like terms: 4 + -4 = 0 0 + x = 0 + -4 x = 0 + -4 Combine like terms: 0 + -4 = -4 x = -4 Simplifying x = -4Solution
x = {-9, -4}
| 7y+3y=210 | | 10=k-6 | | 6m=74 | | -3(1-1x)=-21 | | 9=12-w | | 5(-2+6x)=-10 | | N=324-194 | | -x+4y=26 | | 11k=7 | | 6y-2=6y+4 | | 400+20n=650 | | C+6=13+7-2 | | y^2-8x-6y=-49 | | x(2x-1)(x-5)=0 | | 0=12x^2-77x-20 | | -10+5ln(x)=2-6ln(x) | | 205=61-v | | -x+161=82 | | -56=-4(8+x) | | (75x+50)x=(25+70)x | | 4m=11n | | 3j(4j+4)= | | 9b^2+8b-5=0 | | 3(4-2b)-2b=32 | | 2=11-v | | x+3x+5=4[x+1] | | 5x+2x-16= | | 8X^4+125=0 | | 13x-20y=5 | | 4x+9=x-11 | | 4n^2-n-2=0 | | 3x^2+48-24x=0 |